18,905 research outputs found

    Aging vs crystallisation dynamics in hyperquenched glasses and a resolution of the water Tg controversy

    Full text link
    The possibility of observing a glass transition in water before crystallisation occurs has been debated vigorously but inconclusively over five decades [1,2]. For two decades a glass transition at 136K [2,3] was accepted but this transition has perplexing qualities [4]. Recently it has been argued[2,5],that this assignment must be wrong. The re-assignment of Tg to temperatures above the 150K crystallisation was vigorously contested [6]. Here we use detailed anneal-and-scan studies of a hyperquenched inorganic glass, which does not crystallize on heating, to interpret the perplexing aspects of the 136K water phenomenon. We show that it is indeed linked to a glass transition, though only via a cross-over phenomenon. The thermal history that gives the same behaviour ("shadow" glass transition) in the inorganic glass is linked by crossover to a "normal" glass transition 23% higher in temperature. Thus a Tg is indeed unobservable for water, while the vitreous nature of hyperquenched glassy water is strongly supported. The shadow Tg is reproducible in the inorganic glass as it is in H2O. The observed aging dynamics are very relevant to current glass theory, particularly to dynamical heterogeneity which is seen to have an energy manifestation.Comment: 23 pages, 4 figure

    Reduced-Order Modelling of Parametric Systems via Interpolation of Heterogeneous Surrogates

    No full text

    Implications of Charmless B Decays with Large Direct CP Violation

    Full text link
    Based on the most recent data in charmless B decays including the very recently reported large direct CP violations, it is shown that the weak phase gamma can well be extracted without two-fold ambiguity even only from two decay modes pi^+pi^- and pi^+K^-, and its value is remarkably consistent with the global standard model fit at a compatible accuracy. A fit to all the pi pi, pi K data favor both large electroweak penguin and color-suppressed tree amplitude with large strong phases. It is demonstrated that the inclusion of small SU(3)symmetry breaking effects of strong phases and the inelastic rescattering effects can well improve the consistency of the data, while both effects may not be sufficient to arrive at a small electroweak penguin amplitude in the standard model. It is of interest to notice that large or small electroweak penguin amplitude becomes a testable prediction as they lead to significantly different predictions for the direct CP violations for pi^0 pi^0, pi^0 K^0 modes. Clearly, precise measurements on charmless B decays will provide a window for probing new physics.Comment: 4 pages, 1 figure, 1 table, results updated with the latest data. conclusions unchanged. Refence added. published versio

    PSR B1828-11: a precession pulsar torqued by a quark planet?

    Get PDF
    The pulsar PSR B1828-11 has long-term, highly periodic and correlated variations in both pulse shape and the rate of slow-down. This phenomenon may provide evidence for precession of the pulsar as suggested previously within the framework of free precession as well as forced one. On a presumption of forced precession, we propose a quark planet model to this precession henomenon instead, in which the pulsar is torqued by a quark planet. We construct this model by constraining mass of the pulsar (MpsrM_{\rm psr}), mass of the planet (MplM_{\rm pl}) and orbital radius of the planet (rplr_{\rm pl}). Five aspects are considered: derived relation between MpsrM_{\rm psr} and rplr_{\rm pl}, movement of the pulsar around the center of mass, ratio of MpsrM_{\rm psr} and MplM_{\rm pl}, gravitational wave radiation timescale of the planetary system, and death-line criterion. We also calculate the range of precession period derivative and gravitational wave strength (at earth) permitted by the model. Under reasonable parameters, the observed phenomenon can be understood by a pulsar (10−4∼10−1M⊙10^{-4}\sim10^{-1}M_{\odot}) with a quark planet (10−8∼10−3M⊙10^{-8}\sim10^{-3}M_{\odot}) orbiting it. According to the calculations presented, the pulsar would be a quark star because of its low mass, which might eject a lump of quark matter (to become a planet around) during its birth.Comment: 6 pages, 3 figures, accepted by MNRAS (Letters
    • …
    corecore